Abstract
In innervated collagenous tissues, tissue scale loading may contribute to joint pain by transmitting force through collagen fibers to the embedded mechanosensitive axons. However, the highly heterogeneous collagen structures of native tissues make understanding this relationship challenging. Recently, collagen gels with embedded axons were stretched and the resulting axon signals were measured, but these experiments were unable to measure the local axon strain fields. Computational discrete fiber network models can directly determine axon strain fields due to tissue scale loading. Therefore, this study used a discrete fiber network model to identify how heterogeneous collagen networks (networks with multiple collagen fiber densities) change axon strain due to tissue scale loading. In this model, a composite cylinder (axon) was embedded in a Delaunay network (collagen). Homogeneous networks with a single collagen volume fraction and two types of heterogeneous networks with either a sparse center or dense center were created. Measurements of fiber forces show higher magnitude forces in sparse regions of heterogeneous networks and uniform force distributions in homogeneous networks. The average axon strain in the sparse center networks decreases when compared to homogeneous networks with similar collagen volume fractions. In dense center networks, the average axon strain increases compared to homogeneous networks. The top 1% of axon strains are unaffected by network heterogeneity. Based on these results, the interaction of tissue scale loading, collagen network heterogeneity, and axon strains in native musculoskeletal tissues should be considered when investigating the source of joint pain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.