Abstract

A space–time fully adaptive multiresolution method for evolutionary non-linear partial differential equations is presented introducing an improved local time-stepping method. The space discretisation is based on classical finite volumes, endowed with cell average multiresolution analysis for triggering the dynamical grid adaptation. The explicit time scheme features a natural extension of Runge–Kutta methods which allow local time-stepping while guaranteeing accuracy. The use of a compact Runge–Kutta formulation permits further memory reduction. The precision and computational efficiency of the scheme regarding CPU time and memory compression are assessed for problems in one, two and three space dimensions. As application Burgers equation, reaction–diffusion equations and the compressible Euler equations are considered. The numerical results illustrate the efficiency and superiority of the proposed local time-stepping method with respect to the reference computations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.