Abstract

We investigate the local time T_{loc} statistics for a run and tumble particle (RTP) in one dimension, which is the quintessential model for the motion of bacteria. In random walk literature, the RTP dynamics is studied as the persistent Brownian motion. We consider the inhomogeneous version of this model where the inhomogeneity is introduced by considering the position-dependent rate of the form R(x)=γ|x|^{α}/l^{α} with α≥0. For α=0, we derive the probability distribution of T_{loc} exactly, which is expressed as a series of δ functions in which the coefficients can be interpreted as the probability of multiple revisits of the RTP to the origin starting from the origin. For general α, we show that the typical fluctuations of T_{loc} scale with time as T_{loc}∼t^{1+α/2+α} for large t and their probability distribution possesses a scaling behavior described by a scaling function which we have computed analytically. Second, we study the statistics of T_{loc} until the RTP makes a first passage to x=M(>0). In this case, we also show that the probability distribution can be expressed as a series sum of δ functions for all values of α(≥0) with coefficients originating from appropriate exit problems. All our analytical findings are supported with numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call