Abstract
The extent of a locally equilibrated parton plasma in d + Au collisions at sqrt(s_NN) = 200 GeV is investigated as a function of centrality in a nonequilibrium-statistical framework. Based on a three-sources model, analytical solutions of a relativistic diffusion equation are in precise agreement with recent data for charged-particle pseudorapidity distributions. The moving midrapidity source indicates the size of the local thermal equilibrium region after hadronization. In central d + Au collisions it contains 19% of the produced particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.