Abstract
A theory of local temperature measurement of an interacting quantum electron system far from equilibrium via a floating thermoelectric probe is developed. It is shown that the local temperature so defined is consistent with the zeroth, first, second, and third laws of thermodynamics, provided the probe-system coupling is weak and broad band. For non-broad-band probes, the local temperature obeys the Clausius form of the second law and the third law exactly, but there are corrections to the zeroth and first laws that are higher-order in the Sommerfeld expansion. The corrections to the zeroth and first laws are related, and can be interpreted in terms of the error of a nonideal temperature measurement. These results also hold for systems at negative absolute temperature.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.