Abstract

The simplest hypothesis of DNA strand symmetry states that proportions of nucleotides of the same base pair are approximately equal within single DNA strands. Results of extensive empirical studies using asymmetry measures and various visualization tools show that for long DNA sequences (approximate) strand symmetry generally holds with rather rare exceptions. In the paper, a formal definition of DNA strand local symmetry is presented, characterized in terms of generalized logits and tested for the longest non-coding sequences of bacterial genomes. Validity of a special regression-type probabilistic structure of the data is supposed. This structure is compatible with probability distribution of random nucleotide sequences at a steady state of a context-dependent reversible Markov evolutionary process. The null hypothesis of strand local symmetry is rejected in majority of bacterial genomes suggesting that even neutral mutations are skewed with respect to leading and lagging strands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.