Abstract

Automatic lesion segmentation is important for assisting doctors in the diagnostic process. Recent deep learning approaches heavily rely on large-scale datasets, which are difficult to obtain in many clinical applications. Leveraging external labelled datasets is an effective solution to tackle the problem of insufficient training data. In this paper, we propose a new framework, namely LatenTrans, to utilize existing datasets for boosting the performance of lesion segmentation in extremely low data regimes. LatenTrans translates non-target lesions into target-like lesions and expands the training dataset with target-like data for better performance. Images are first projected to the latent space via aligned style-based generative models, and rich lesion semantics are encoded using the latent codes. A novel consistency-aware latent code manipulation module is proposed to enable high-quality local style transfer from non-target lesions to target-like lesions while preserving other parts. Moreover, we propose a new metric, Normalized Latent Distance, to solve the question of how to select an adequate one from various existing datasets for knowledge transfer. Extensive experiments are conducted on segmenting lung and brain lesions, and the experimental results demonstrate that our proposed LatenTrans is superior to existing methods for cross-disease lesion segmentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call