Abstract

The electric field and frequency dependence of the dielectric permittivities of relaxor dielectrics makes them promising tuneable microwave component materials and gives rise to numerous potential applications, especially in the fields of electronics and telecommunications technologies. Relaxors of this type have been known for over half a century. The relaxation mechanisms underlying their unique dielectric behaviour, however, are still far from well understood. This lack of understanding is a significant impediment to the further development and optimization of their desirable dielectric properties (high dielectric constants, low dielectric losses and high field tuneabilities). Because such functional relaxors are almost invariably chemically and/or displacively disordered, an understanding of their local nanoscale crystal structure is an important starting point to gain a better understanding of their intrinsic dielectric properties. Conventional Bragg scattering diffraction techniques, whether obtained via X-ray diffraction (XRD), neutron diffraction or electron diffraction, contain only 1-body information on the time and space averaged crystal structure as a result of the assumption of a regularly repeating real space unit cell and its corollary, sharp Bragg reflections only in reciprocal space (see e.g. Fig.1a). Correlated chemical and/or displacive deviations from that average structure i.e. information on local order, on the other hand, gives rise to additional, usually much weaker, structured diffuse scattering in addition to the strong Bragg reflections of the underlying average structure (see e.g. Fig.1b). The detection and reciprocal space mapping of such structured diffuse intensity distributions is an important step towards a structural understanding of the chemical and/or displacive disorder responsible and the relationship that this local order may, or may not, have with electric dipoles and intrinsic dielectric relaxation behaviour. Ultimately, real space modelling and fitting to the observed diffuse distribution is required in order to extract the local ordering responsible. Electron diffraction is ideally suited to the detection and mapping task as a result of the strength of the interaction between fast electrons and matter, the ability to record planar cross-sections of reciprocal space from localized real space regions coupled with the ability to tilt over large angular ranges enabling the systematic exploration of reciprocal space. The strong interaction of electrons with matter, however, does mean that the effects of multiple scattering and dynamical diffraction need to be borne in mind, in particular at major zone axis orientations. It is thus often quite useful to deliberately take off-axis electron diffraction patterns in order to minimize the effects of multiple scattering. By such methods, useful and reliable structural information can be extracted from such data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call