Abstract

A method for the analysis of time-resolved x-ray absorption near edge structure (XANES) spectra is proposed. It combines principal component analysis of the series of experimental spectra, multidimensional interpolation of theoretical XANES as a function of structural parameters, and ab initio XANES calculations. It allows to determine the values of structural parameters for intermediates of chemical reactions and the concentrations of different states as a function of time. This approach is tested using numerically generated data and its possibilities and limitations are discussed. The application of this method to a reaction with methylrhenium trioxide catalyst in solution, for which experimental data were measured using stopped-flow energy-dispersive x-ray absorption spectroscopy technique, is demonstrated. Possibilities and limitations of this experimental technique are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.