Abstract

The local structure around Co, Zn and Sr atoms in incommensurately modulated, melilite-type X2T1 T 2 2 O7 (X=Ca and Sr, T1=Mg, Co and Zn, T2=Si) solid-solutions has been investigated by EXAFS analyses. The modulated structure was confirmed in Ca2-xSrxCoSi2O7 solid-solutions with X=0.0 to 0.6 and for both Ca2Mg1-YCoYSi2O7 and Ca2Mg1-YZnYSi2O7 solid-solutions over the whole compositional range at room temperature. The actual bond-distances determined by the EXAFS method for the T1 site (Co-, Zn-O) in the modulated structure are longer than the mean bond-distances obtained from the X-ray diffraction method. This is attributable to the libration of the T1 tetrahedra. In the Ca1-XSrXCoSi2O7 solid-solution both the Sr-O and Co-O distances by the EXAFS method for the X-site increase from Ca end-member to Sr end-member. These increases are respectively 0.8% and 0.6%. This means the local expansions of the tetrahedral sheets and of the XO polyhedra are well matched. In the modulated Ca2Co1-YMgYSi2O7 and Ca2Zn1-YMgYSi2O7 solid-solutions, the actual Co-O and Zn-O distances for the T1-sites are nearly constant in the whole compositional range. The compositional variations of the local structure around the cations in the solid-solution are different for the X and T1 sites. It is concluded that the local geometric restriction for the size of substituted cation in X site is larger than that in T1 site. The dimension of the tetrahedral sheet puts restriction on the size of the cations situated at the interlayer X sites. In other words, the different behavior of the local geometric restriction between the X and T1 sites is an important feature of the melilite structure and is also related to the modulated structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call