Abstract

Abstract An aluminum-free zinc-bearing smectite (Zn-smectite) was synthesized under hydrothermal conditions, together with its magnesium substituted products. Its layer charge calculated by cation exchange capacity (CEC) is 117.4 mmol/100 g. Powder X-ray diffraction (XRD) revealed turbostratic stacking and showed that the d06l value of the Zn-smectite was >1.525 Å, indicating that it is trioctahedral. Its d001 value increased from ca.12.8 Å to ca. 16.0 Å after ethylene glycol (EG) saturation. The Zn-smectite did not irreversibly collapse after heating the Li+-saturated sample to 300 °C, suggesting that its layer charge was generated from octahedral-site vacancies (defects). The Zn-smectite resembles zincsilite-like minerals with interlayer Na+ and Zn2+. The intralayer structure of zincsilite was confirmed by pair distribution function (PDF) analysis, and the whole crystal structure was built and optimized by DFT calculation in the CASTEP module of the Materials Studio software. Synthetic zincsilite is triclinic, space group P1, and its optimized unit-cell parameters are: a = 5.294 Å, b = 9.162 Å, c = 12.800 Å, α = 90.788°, β = 98.345°, and γ = 90.399°.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call