Abstract

Molten globules have been proposed to be general intermediates in protein folding. Despite numerous studies, a detailed description of the structure of a molten globule remains elusive. Recently, we showed that the molten globule formed by the helical domain of alpha-lactalbumin (alpha-LA) has a native-like backbone topology. Here we probe local structural preferences in the helical domain of the alpha-LA molten globule by analyzing a set of native and nonnative single disulfide bond variants using a combination of circular dichroism spectroscopy and determination of the equilibrium constant for disulfide bond formation. We find that the region surrounding the 28-111 disulfide bond has a high preference to adopt a native-like structure. Formation of other native or nonnative disulfide bonds is significantly less favorable. Our results suggest that molten globules contain regions with varying degrees of specificity for native-like structure and that the core region surrounding the 28-111 disulfide bond plays an important role in alpha-LA folding by stabilizing the molten globule intermediate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.