Abstract

The local stress and strain are analyzed in a heterogeneous microstructure induced by compression of aluminium rings under nearly full sticking conditions. This analysis is based on characterization of mechanical behavior and microstructure applying three complementary techniques covering multiple length scales: microhardness, electron microscopy (electron backscatter diffraction) and finite element modelling. The findings are underpinned by applying those techniques in an analysis of a homogeneous microstructure induced by compression of hot-extruded aluminium cylinders. The local stress and strain are estimated at 14 different positions in two rings representing large variations in strain. A comparison with the stress and strain in the homogeneously compressed cylinders related to the average spacing between deformation induced low and high angle boundaries, validates the characterization techniques and supports a hypothesis that the microstructure of local regions in a heterogeneous structure evolve in accordance with universal principles and mechanisms established for the evolution of the deformation microstructure of polycrystalline metals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.