Abstract
This paper presents an experimental method for determining the local strain distribution in the plies of a thermoplastic 5-harness satin weave composite under uni-axial static tensile load. In contrast to uni-directional composites, the yarn interlacing pattern in textile composites causes heterogeneous strain fields with large strain gradients around the yarn crimp regions. In addition, depending on the local constraints that are imposed by the surrounding plies, the deformation behavior of the laminate inner layers may vary from that of the surface layers, which are relatively more free to deform, compared to the inner layers. In order to validate the above hypothesis, the local strains on the composite surface were measured using digital image correlation technique (LIMESS). Internal strains in the composite laminate were measured using embedded fibre optic sensors (FOS). Based on the DIC results, the strain profiles at various locations on the composite surface were estimated. Using the FOS results, the maximum and minimum strain values in the laminate inner layers were evaluated. Comparison of the local strain values at different laminate positions provides an estimate of the influence of the adjacent layers on the local longitudinal strain behavior of a satin weave composite. Part II of this paper elucidates the local strain variation computed using the meso-FE simulations. In addition to the comparison of numerical and experimental strain profiles, Part II presents the maximum and minimum strain envelopes for the carbon-PolyPhenelyne Sulphide (PPS) thermoplastic 5-harness satin weave composite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.