Abstract

Strain engineering shows distinct advantages in thermal management by tuning thermal resistance in a wide range. Till now, most of the relative studies were concentrated in uniform deformation, wherein the effects of the localized strain field are rarely exploited. Herein, by using non-equilibrium molecular dynamics simulations, we explore the local strain field engineering effects on the interfacial thermal resistance (ITR) of graphene nanoribbons (GNRs). The model of GNRs employed in this work contains extended drag threads, which are used to create a local strain field. Our simulation results show that the ITR has a quasi-linear relationship with the local tensile strain. GNRs are very sensitive to the local strain field in terms of ITR with a maximum enhancement factor of ∼1.5 at the strain of 10%. The ITR is found to depend linearly on the local strain. This phenomenon is thoroughly explained by micro-structure deformation, heat flux scattering, and phonon density of state overlapping. Our findings here offer a simple yet useful tool in modulating the thermal properties of graphene and other two-dimensional materials by using local strain engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.