Abstract
In this study, molecular dynamics (MD) simulations were used to investigate how alloying tungsten (W) with molybdenum (Mo) and local strain affect the primary defect formation and interstitial dislocation loops (IDLs) in W-Mo alloys. While the number of Frenkel pairs (FPs) in the W-Mo alloy is similar to pure W, it is half that of pure Mo. The W-20% Mo alloy, chosen for further analysis, showed minimal FP variance after collision cascades induced by primary knock-on atoms (PKAs) at 10 to 80 keV. The research examined hydrostatic strains from -1.4% to 1.6%, finding that higher strains correlated with increased FP counts and cluster formation, including IDLs. The following two types of IDLs were identified: majority ½ <111> loops as well as <100> IDLs that formed within the initial picoseconds of the simulations under higher tensile strain (1.6%) and larger PKA energies (80 keV). The strain effects also correlated with changes in threshold displacement energy (TDE), with higher FP formation under tensile strain. This study highlights the impact of strain and alloying on radiation damage, particularly in low-temperature, high-energy environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.