Abstract
ABSTRACTExperimental and theoretical investigations of high-energy shifts of single InAs, InGaAs, InAlAs and InP quantum dot (QD) emission lines induced by contact pressure exerted by a near-field optical fiber tip are reported. “Pressure” coefficients of 0.65–3.5 meV/nm have been measured for ground state emission lines in agreement with numerical calculations. We show that the observed increase of the tip-induced energy shift with increasing aperture diameter is caused by a decrease of the uniaxial strain component. We also report the effect of emission instability of single QD emission intensity under tip-induced pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.