Abstract

Most existing methods for edge detection rely on contrast dependent thresholds. We show that a local measurement defined by the ratio of the smallest to the largest eigenvalue of the second moment matrix of filter kernels, can be used to separate smooth, low curvature curves and straight lines from noise, independent of contrast, in both color and gray level images. This is done without applying a threshold to the gradient magnitude. The edge images are defined as zero crossings in the gradient direction. The covariance matrix can easily be computed for both gray level images and color images. Further we show the potentiality of such a measure by integrating it with the Hough transform to extract long straight lines in noisy color images. The method is shown to successfully extract consistent line features from color images of a scene, captured under drastically different lightening conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.