Abstract

Two discretization methods, the forward Euler's method and the Kahan's reflexive method, are compared by looking at the local stabilities of fixed points of a system of differential equations. We explain why forward Euler's method is not as good from the viewpoint of complex analysis. Conformal mappings are used to relate the eigenvalues of the Jacobian matrices of the differential equations system and the resulting difference equations system. The Euler's method will not preserve Hopf bifurcation. The Kahan's method preserves the local stability of the fixed points of the differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.