Abstract

BackgroundIn the recent past, the introduction of Classical Swine Fever Virus (CSFV) followed by between-herd spread has given rise to a number of large epidemics in The Netherlands and Belgium. Both these countries are pork-exporting countries. Particularly important in these epidemics has been the occurrence of substantial "neighborhood transmission" from herd to herd in the presence of base-line control measures prescribed by EU legislation. Here we propose a calculation procedure to map out "high-risk areas" for local between-herd spread of CSFV as a tool to support decision making on prevention and control of CSFV outbreaks. In this procedure the identification of such areas is based on an estimated inter-herd distance dependent probability of neighborhood transmission or "local transmission". Using this distance-dependent probability, we derive a threshold value for the local density of herds. In areas with local herd density above threshold, local transmission alone can already lead to epidemic spread, whereas in below-threshold areas this is not the case. The first type of area is termed 'high-risk' for spread of CSFV, while the latter type is termed 'low-risk'.ResultsAs we show for the case of The Netherlands, once the distance-dependent probability of local transmission has been estimated from CSFV outbreak data, it is possible to produce a map of the country in which areas of high-risk herds and of low-risk herds are identified. We made these maps even more informative by estimating border zones between the two types of areas. In these border zones the risk of local transmission of infection to a nearby high-risk area exceeds a certain level.ConclusionThe risk maps provide an easily understandable visualization of the spatial heterogeneities in transmission risk. They serve as a tool for area-specific designs of control strategies, and possibly also for spatial planning of areas where livestock farming is allowed. Similar risk maps can in principle be constructed for other highly-transmissible livestock infections that spread via neighborhood transmission.

Highlights

  • In the recent past, the introduction of Classical Swine Fever Virus (CSFV) followed by between-herd spread has given rise to a number of large epidemics in The Netherlands and Belgium

  • These risk maps for the spread of CSFV are based on the pig farm location data for 2004

  • We have presented a natural approach to construct herddensity-based risk maps for the local spread of CSFV and illustrated the approach by calculating risk maps for The Netherlands

Read more

Summary

Introduction

The introduction of Classical Swine Fever Virus (CSFV) followed by between-herd spread has given rise to a number of large epidemics in The Netherlands and Belgium The base-line containment strategy, as prescribed in 1980 by European Union (EU) directive 80/217/EEC, to deal with CSFV outbreaks includes killing all animals on infected farms, movement stand-still, intensive surveillance, and zoo-sanitary measures [2] This strategy appeared insufficiently effective during the CSFV outbreak in The Netherlands in 1997–1998 [3]; in particular it was observed that substantial transmission still occurred between herds typically at less than a few kilometers from each other. Public criticism concentrated on the fact that a very large number of healthy, non-infected animals was destroyed

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call