Abstract

The electronic and magnetic structures of the perovskite CaMnO 3 are self-consistently calculated assuming two crystal structures at the same formula unit volume within the local spin density functional theory and the augmented spherical wave (ASW) method. From the comparisons of energy differences between the different magnetic states the ground state configuration is an insulator with G-type ordering. This result together with the magnitudes of the magnetic moments are in agreement with experiment. The influence of mixing between Mn and O is found spin dependent from the analysis of the crystal orbital overlap population (COOP) which enable to describe the chemical bond. The calculations underline a feature of a half metallic ferromagnet which could be connected with the colossal magnetoresistance (CMR) property of related compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call