Abstract

In this article the following class of partial differential operators is examined for local solvability: Let P(X, Y) be a homogeneous polynomial of degree n ≥ 2 in the non-commuting variables X and Y. Suppose that the complex polynomial P(iz, 1) has distinct roots and that P(z, 0) = zn. The operators which we investigate are of the form P(X, Y) where X = δx and Y = δy + xδw for variables (x, y, w) ∈ ℝ3. We find that the operators P (X, Y) are locally solvable if and only if the kernels of the ordinary differential operators P(iδx, ± x)* contain no Schwartz-class functions other than the zero function. The proof of this theorem involves the construction of a parametrix along with invariance properties of Heisenberg group operators and the application of Sobolev-space inequalities by Hormander as necessary conditions for local solvability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call