Abstract

Global potential energy surface (PES) exploration provides a unique route to predict the thermodynamic and kinetic properties of unknown materials, but the task is highly challenging for systems with tight covalent bonds. Here, we develop the local-softening stochastic surface walking (LS-SSW) method for scanning corrugated PESs. LS-SSW transforms the vibrational mode space of a system by adding pairwise penalty potentials with a self-adaption mechanism, which helps to delocalize and soften the strong local modes. This allows the stochastic surface walking (SSW) method to capture more efficiently the correct local atomic movement toward nearby minima and simultaneously reduce the barrier height of reactions. As a result, the local trapping time in searching for the corrugated PES is greatly reduced. LS-SSW can be applied generally to the reaction pathway sampling and the global PES exploration of both clusters and crystals, the high efficiency of which is demonstrated in searching the reaction pathways between C4H6 isomers, finding the global minimum of carbon clusters up to 360 atoms, and constructing the global PES of Fe7C3 material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.