Abstract

This paper presents a theoretical nonstationary stochastic analysis scheme using pseudo-excitation method (PEM) for seismic analysis of long-span structures under tridirectional spatially varying ground motions, based on which the local site effects on structural seismic response are studied for a high-pier railway bridge. An absolute-response-oriented scheme of PEM in nonstationary stochastic analysis of structure under tridirectional spatial seismic motions, in conjunction with the derived mathematical scheme in modeling tridirectional nonstationary spatially correlated ground motions, is proposed to resolve the drawbacks of conventional indirect approach. To apply the proposed theoretical approach readily in stochastic seismic analysis of complex and significant structures, this scheme is implemented and verified in a general finite element platform, and is then applied to a high-pier railway bridge under spatially varying ground motions considering the local site effect and the effect of ground motion nonstationarity. Conclusions are drawn and can be applied in the actual seismic design and analysis of high-pier railway bridges under tridirectional nonstationary multiple excitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.