Abstract

Two new concepts for molecular solids, 'local similarity' and 'boundary-preserving isometry', are defined mathematically and a theorem which relates these concepts is formulated. 'Locally similar' solids possess an identical short-range structure and a 'boundary-preserving isometry' is a new mathematical operation on a finite region of a solid that transforms mathematically a given solid to a locally similar one. It is shown further that the existence of such a 'boundary-preserving isometry' in a given solid has infinitely many 'locally similar' solids as a consequence. Chemical implications, referring to the similarity of X-ray powder patterns and patent registration, are discussed as well. These theoretical concepts, which are first introduced in a schematic manner, are proved to exist in nature by the elucidation of the crystal structure of some diketopyrrolopyrrole (DPP) derivatives with surprisingly similar powder patterns. Although the available powder patterns were not indexable, the underlying crystals could be elucidated by using the new technique of ab initio prediction of possible polymorphs and a subsequent Rietveld refinement. Further ab initio packing calculations on other molecules reveal that 'local crystal similarity' is not restricted to DPP derivatives and should also be exhibited by other molecules such as quinacridones. The 'boundary-preserving isometry' is presented as a predictive tool for crystal engineering purposes and attempts to detect it in crystals of the Cambridge Structural Database (CSD) are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.