Abstract

Currently, the different deep neural network (DNN) learning approaches have done much for the classification of hyperspectral images (HSIs), especially most of them use the convolutional neural network (CNN). HSI data have the characteristics of multidimensionality, correlation, nonlinearity, and a large amount of data. Therefore, it is particularly important to extract deeper features in HSIs by reducing dimensionalities which help improve the classification in both spectral and spatial domains. In this article, we present a spatial–spectral HSI classification algorithm, local similarity projection Gabor filtering (LSPGF), which uses local similarity projection (LSP)-based reduced dimensional CNN with a 2-D Gabor filtering algorithm. First, use the local similarity analysis to reduce the dimensionality of the hyperspectral data, and then we use the 2-D Gabor filter to filter the reduced hyperspectral data to generate spatial tunnel information. Second, use the CNN to extract features from the original hyperspectral data to generate spectral tunnel information. Third, the spatial tunnel information and the spectral tunnel information are fused to form the spatial–spectral feature information, which is input into the deep CNN to extract more effective features; and finally, a dual optimization classifier is used to classify the final extracted features. This article compares the performance of the proposed method with other algorithms in three public HSI databases and shows that the overall accuracy of the classification of LSPGF outperforms all datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.