Abstract
We prove, over a p-adic local field F, that an irreducible supercuspidal representation of GL2n(F) is a local Langlands functorial transfer from SO2n+1(F) if and only if it has a nonzero Shalika model (Corollary 5.2, Proposition 5.4 and Theorem 5.5). Based on this, we verify (Sect. 6) in our cases a conjecture of Jacquet and Martin, a conjecture of Kim, and a conjecture of Speh in the theory of automorphic forms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.