Abstract

Evaluating the failure probability of a system is essential in order to assess its reliability. This probability may significantly depend on deterministic parameters such as distribution parameters or design parameters. The sensitivity of the failure probability with regard to these parameters is then critical for the reliability analysis of the system or in reliability-based design optimization. Here, we introduce a new approach to estimate the failure probability derivatives with respect to deterministic inputs, where the bias can be controlled and the simulation budget is kept low. The sensitivity estimate is obtained as a byproduct of a heteroscedastic polynomial regression with a database built with simulation methods. The polynomial comes from a Taylor series expansion of the approximated sensitivity domain integral obtained with the Weak approach. This new methodology is applied to two engineering use cases with the importance sampling strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.