Abstract

Deep feature embedding aims to learn discriminative features or feature embeddings for image samples which can minimize their intra-class distance while maximizing their inter-class distance. Recent state-of-the-art methods have been focusing on learning deep neural networks with carefully designed loss functions. In this work, we propose to explore a new approach to deep feature embedding. We learn a graph neural network to characterize and predict the local correlation structure of images in the feature space. Based on this correlation structure, neighboring images collaborate with each other to generate and refine their embedded features based on local linear combination. Graph edges learn a correlation prediction network to predict the correlation scores between neighboring images. Graph nodes learn a feature embedding network to generate the embedded feature for a given image based on a weighted summation of neighboring image features with the correlation scores as weights. Our extensive experimental results under the image retrieval settings demonstrate that our proposed method outperforms the state-of-the-art methods by a large margin, especially for top-1 recalls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.