Abstract

Let [Formula: see text] be a central simple algebra of degree [Formula: see text] over a number field [Formula: see text], and [Formula: see text] be a strictly maximal subfield. We say that the ring of integers [Formula: see text] is selective if there exists an isomorphism class of maximal orders in [Formula: see text] no element of which contains [Formula: see text]. In the present work, we consider a local variant of the selectivity problem and applications. We first prove a theorem characterizing which maximal orders in a local central simple algebra contain the global ring of integers [Formula: see text] by leveraging the theory of affine buildings for [Formula: see text] where [Formula: see text] is a local central division algebra. Then as an application, we use the local result and a local–global principle to show how to compute a set of representatives of the isomorphism classes of maximal orders in [Formula: see text], and distinguish those which are guaranteed to contain [Formula: see text]. Having such a set of representatives allows both algebraic and geometric applications. As an algebraic application, we recover a global selectivity result, and give examples which clarify the interesting role of partial ramification in the algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.