Abstract

AbstractDynamic mechanical results are reported for segmental relaxation of monodisperse polystyrenes (PSs) with molecular weights of 0.7, 3, 18, and 104 kg/mol and bidisperse PSs created from blending pairs of these materials. The data for the monodisperse polymers confirm previous findings; namely, there is an increase in the glass‐transition temperature normalized temperature dependence of the segmental relaxation times (fragility) with increasing molecular weight, along with a breakdown of the correlation between the fragility and the breadth of the relaxation function. For both the monodisperse and bidisperse PSs, the glass‐transition temperature is a single function of the average number of chain ends, independent of the nature of the molecular weight distribution. It is also found that these materials exhibit fragilities that uniquely depend on the number‐average molecular weight, that is, on the concentration of chain ends. In blends with linear PS, cyclic PS with a low molecular weight behaves as a high polymer, similar to its neat behavior, reflecting the overriding importance of chain ends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2604–2611, 2004

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call