Abstract

The scene flow describes the motion of each 3D point between two time steps. With the arrival of new depth sensors, as the Microsoft Kinect, it is now possible to compute scene flow with a single camera, with promising repercussion in a wide range of computer vision scenarios. We propose a novel method to compute a local scene flow by tracking in a Lucas–Kanade framework. Scene flow is estimated using a pair of aligned intensity and depth images but rather than computing a dense scene flow as in most previous methods, we get a set of 3D motion vectors by tracking surface patches. Assuming a 3D local rigidity of the scene, we propose a rigid translation flow model that allows solving directly for the scene flow by constraining the 3D motion field both in intensity and depth data. In our experimentation we achieve very encouraging results. Since this approach solves simultaneously for the 2D tracking and for the scene flow, it can be used for motion analysis in existing 2D tracking based methods or to define scene flow descriptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.