Abstract

Scanning electrochemical microscopy (SECM) is employed to characterize the evolution of local electrochemical surface activity during lithium-based conversion layer formation on legacy aerospace aluminium alloy AA2024-T3. Initially, three types of studied intermetallic particles - S-, θ- and constituent phases - act as active cathodic areas. Subsequently, θ- and constituent phases show passivation preceding that of S-phase particles during the later conversion layer formation stages. The entire surface, including the matrix region, shows a higher reactivity at the beginning and then gradually shows decreasing reactivity. Hydrogen evolution-generated bubbles attach to the alloy surface and locally hinder the conversion layer formation, weakening the corrosion protection the conversion layer provides at those locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call