Abstract

Phase retrieval can be expressed as a non-convex constrained optimization problem to identify one phase minimizer one a torus. Many iterative transform techniques have been proposed to identify the minimizer, e.g., relaxed averaged alternating reflections (RAAR) algorithms. In this paper, we present one optimization viewpoint on the RAAR algorithm. RAAR algorithm is one alternating direction method of multipliers with one penalty parameter. Pairing with multipliers (dual vectors), phase vectors on the primal space are lifted to higher dimensional vectors, RAAR algorithm is one continuation algorithm, which searches for local saddles in the primal-dual space. The dual iteration approximates one gradient ascent flow, which drives the corresponding local minimizers in a positive-definite Hessian region. Altering penalty parameters, the RAAR avoids the stagnation of these corresponding local minimizers in the primal space and thus screens out many stationary points corresponding to non-local minimizers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.