Abstract
The structures of many large bacteriophages, such as the P23-77 capsids, do not adhere strictly to the quasi-equivalence principle of viral architecture. Although the general architecture of the P23-77 capsids is classed as T=28d, it self-assembles from multiple copies of two types of coat protein subunits, and the resulting hexameric capsomers do not conform to the Caspar-Klug paradigm. There are two types of hexamers with distinct internal organization, that are located at specific positions in the capsid. It is an open problem which assembly mechanism can lead to such a complex capsid organization. Here we propose a simple set of local rules that can explain how such non-quasi-equivalent capsid structures can arise as a result of self-assembly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.