Abstract

The well-separated pair decomposition (WSPD) of the complete Euclidean graph defined on points in $R^2$, introduced by Callahan and Kosaraju [JACM, 42 (1): 67-90, 1995], is a technique for partitioning the edges of the complete graph based on length into a linear number of sets. Among the many different applications of WSPDs, Callahan and Kosaraju proved that the sparse subgraph that results by selecting an arbitrary edge from each set (called WSPD-spanner) is a $1 + 8/(s − 4)$-spanner, where $s > 4$ is the separation ratio used for partitioning the edges.Although competitive local-routing strategies exist for various spanners such as Yao-graphs, $\Theta$-graphs, and variants of Delaunay graphs, few local-routing strategies are known for any WSPD-spanner. Our main contribution is a local-routing algorithm with a near-optimal competitive routing ratio of $1 + O(1/s)$ on a WSPD-spanner.Specifically, using Callahan and Kosaraju’s fair split-tree, we show how to build a WSPD-spanner with spanning ratio $1 + 4/s + 4/(s − 2)$ which is a slight improvement over $1 + 8/(s − 4)$. We then present a 2-local and a 1-local routing algorithm on this spanner with competitive routing ratios of $1 + 6/(s − 2) + 4/s$ and $1 + 8/(s − 2) + 4/s + 8/s^2$, respectively. Moreover, we prove that there exists a point set for which our WSPD-spanner has a spanning ratio of at least $1 + 8/s$, thereby proving the near-optimality of its spanning ratio and the near-optimality of the routing ratio of both our routing algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.