Abstract
In various wireless networking settings, node locations determine a network’s topology, allowing the network to be modelled by a geometric graph drawn in the plane. Without any additional information, local geometric routing algorithms can guarantee delivery to the target node only in restricted classes of geometric graphs, such as triangulations. In order to guarantee delivery on more general classes of geometric graphs (e.g., convex subdivisions or planar subdivisions), previous local geometric routing algorithms required Θ(logn) state bits to be stored and passed with the message. We present the first local geometric routing algorithm using only one state bit to guarantee delivery on convex subdivisions and the first local geometric memoryless routing algorithm that guarantees delivery on edge-augmented monotone subdivisions (including all convex subdivisions) when the algorithm has knowledge of the incoming port (the preceding node on the route).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.