Abstract
We establish topological local rigidity for uniform lattices in compactly generated groups, extending the result of Weil from the realm of Lie groups. We generalize the classical local rigidity theorem of Selberg, Calabi and Weil to irreducible uniform lattices in Isom (X) where X is a proper CAT(0) space with no Euclidian factors, not isometric to the hyperbolic plane. We deduce an analog of Wang’s finiteness theorem for certain non-positively curved metric spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.