Abstract

We present an experimental method allowing a direct measurement of the local rheological behavior of complex fluids. A magnetic probe is inserted into the bulk of the fluid and submitted to a controlled magnetic force or torque, which induces a mechanical perturbation of the fluid. The geometry of the perturbation can be varied using two kinds of probes: a magnetic bead submitted to a homogeneous magnetic force in one direction, and a magnetic needle that can turn inside the material under the effect of an applied magnetic torque. Two complex viscoelastic fluids are investigated. First, a surfactant solution, which has a linear mechanical behavior in the range of the applied stresses, is used to test and validate the experimental methodology. We then use the local probes to investigate a Laponite colloidal suspension, which exhibits nonlinear behavior such as thixotropy, shear thinning, and aging. In this latter fluid, we find an exponential growth of the rheological relaxation time versus the system age, a power-law dependence of the fluid viscosity on the applied stress, and a dynamical yield stress which saturates with the fluid aging time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call