Abstract

Recent experimental and numerical investigations reveal that the onset of turbulence in plane-Poiseuille flow and plane-Couette flow has some similar stages separated with different threshold Reynolds numbers. Based on these observations and the energy equation of a disturbed fluid element, a local Reynolds number ReL is derived to represent the maximum ratio of the energy supplement to the energy dissipation in a cross section. It is shown that along the sequence of transition stages, which include transient localized turbulence, “equilibrium” localized turbulence, spatially intermittent but temporally persistent turbulence and uniform turbulence, the corresponding thresholds of ReL for plane-Couette flow, Hagen-Poiseuille flow and plane-Poiseuille flow are consistent, indicating that the critical (threshold) states during the laminar-turbulent transition are determined by the local properties of the base flow and are independent of global features, such as flow geometries (pipe or channel) and types of driving forces (shear driving or pressure driving).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.