Abstract

The bulk locality in the constructive holographic renormalization group requires miraculous cancellations among various local renormalization group functions. The cancellation is not only from the properties of the spectrum but from more detailed aspects of operator product expansions in relation to conformal anomaly. It is remarkable that one-loop computation of the universal local renormalization group functions in the weakly coupled limit of the N=4 super Yang-Mills theory fulfils the necessary condition for the cancellation in the strongly coupled limit in its SL(2,Z) duality invariant form. From the consistency between the quantum renormalization group and the holographic renormalization group, we determine some unexplored local renormalization group functions (e.g. diffusive term in the beta function for the gauge coupling constant) in the strongly coupled limit of the planar N=4 super Yang-Mills theory.

Highlights

  • The idea that the renormalization group scale may be regarded as the holographic direction has been appreciated since the birth of the AdS/CFT correspondence

  • It is remarkable that one-loop computation of the universal local renormalization group functions in the weakly coupled limit of the N = 4 super Yang-Mills theory fulfils the necessary condition for the cancellation in the strongly coupled limit in its SL(2, Z) duality invariant form

  • From the viewpoint of the constructive holography based on the local renormalization group, it seems rather surprising that higher derivative terms disappear in the bulk action

Read more

Summary

Introduction

The idea that the renormalization group scale may be regarded as the holographic direction has been appreciated since the birth of the AdS/CFT correspondence. It is remarkable that one-loop computation of the universal local renormalization group functions in the weakly coupled limit of the N = 4 super Yang-Mills theory fulfils the necessary condition for the cancellation in the strongly coupled limit in its SL(2, Z) duality invariant form.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.