Abstract

Cell sheet transplantation is a key tissue engineering technology. A vascular endothelial growth factor (VEGF)-releasing fiber mat is developed for the transplantation of multilayered cardiomyocyte sheets. Poly(vinyl alcohol) fiber mats bearing poly(lactic-co-glycolic acid) nanoparticles that incorporate VEGF are fabricated using electrospinning and electrospray methods. Six-layered cardiomyocyte sheets are transplanted with a VEGF-releasing mat into athymic rats. After two weeks, these sheets produce thicker cardiomyocyte layers compared with controls lacking a VEGF-releasing mat, and incorporate larger-diameter blood vessels containing erythrocytes. Thus, local VEGF release near the transplanted cardiomyocytes induces vascularization, which supplies sufficient oxygen and nutrients to prevent necrosis. In contrast, cardiomyocyte sheets without a VEGF-releasing mat do not survive in vivo, probably undergo necrosis, and are reduced in thickness. Hence, these VEGF-releasing mats enable the transplantation of multilayered cardiomyocyte sheets in a single procedure, and should expand the potential of cell sheet transplantation for therapeutic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.