Abstract

Granulosa cells produce inhibin and activin, proteins implicated in the local regulation of preovulatory follicular development. To assess interactions among FSH, LH, inhibin and activin on primate granulosa cell aromatase activity, we studied primary granulosa cell cultures from the ovaries of the common marmoset ( Callithrix jacchus), a monkey with an ovarian cycle similar in length to the human cycle. The distinctive action of activin was augmentation of gonadotropin-responsive aromatase activity throughout antral follicular development. FSH-stimulated aromatase activity in granulosa cells from immature follicles was augmented many fold by picomolar amounts of activin. In cell cultures from preovulatory follicles, the presence of activin stimulated basal aromatase activity in the absence of gonadotropin, as well as augmenting the action of LH. Thus, locally produced activin has the potential to modulate aromatase activity in developing ovarian follicles. By contrast, inhibin or inhibin α-subunit purified from bovine follicular fluid had minimal effects on aromatase activity. The only significant effect was slight suppression of FSH-inducible aromatase activity in granulosa cells from immature follicles at an inhibin concentration of 100 ng/ml. The finding that inhibin has a negligible effect on aromatase activity in granulosa cells from mature follicles suggests that it is unlikely to exert a physiologically significant influence on aromatase activity in vivo. However, evidence from other studies suggests that inhibin might affect aromatization indirectly through acting locally to modulate thecal androgen (aromatase substrate) production. Therefore, both inhibin and activin have the potential to contribute at different levels to paracrine and autocrine regulation of follicular oestrogen synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call