Abstract

Embryo implantation and formation of a functional placenta are complex processes that require a plethora of regulatory molecules. In recent years, many of these mediators have been identified, often from studies in experimental animals. Furthermore, their expression patterns at the embryo-maternal interface in women have been characterized and provide clues to their potential actions. What has been missing in most cases is any experimental demonstration of their function. Proteases, cytokines and chemokines are among the molecules identified at the embryo-maternal interface. Functional studies of the protease, proprotein convertase (PC)6, the gp130 cytokines, leukemia inhibitory factor (LIF) and interleukin (IL)11 and the chemokines, CX3CL1 and CCL14 demonstrate potential actions within the uterine cavity. These actions include: enhancing blastocyst development, modifying adhesive properties of the blastocyst and the uterine epithelial surface, and providing chemotactic guidance to the blastocyst. As implantation proceeds, PC6 and IL-11 also act to drive decidualization. The products (proteases, chemokines and cytokines) produced by these decidual cells provide a unique environment. This is important for both directing and restraining trophoblast invasion and for leukocyte trafficking into the decidua until the placenta is fully established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.