Abstract

A framework of local reduced-order modeling using machine learning algorithms is presented together with an approach to optimally select the snapshots for strongly nonlinear problems. By using an unsupervised learning algorithm, solutions are grouped into clusters of similar features. The input parameter space is divided into subregions by decision boundaries based on a supervised learning algorithm. Local reduced-order bases are extracted on each cluster, for which the solutions are represented as a linear combination of the basis vectors from their corresponding subregion. The proposed methodology is employed to conduct a comprehensive, exploration of the in-flight icing certification envelopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.