Abstract

A novel algorithm is described and illustrated for high speed imaging of biopolymers and other stringlike samples using atomic force microscopy. The method uses the measurements in real-time to steer the tip of the instrument to localize the scanning area over the sample of interest. Depending on the sample, the scan time can be reduced by an order of magnitude or more while maintaining image resolution. Images are generated by interpolating the non-raster data using a modified Kriging algorithm. The method is demonstrated using physical simulations that include actuator and cantilever dynamics, nonlinear tip-sample interactions, and measurement noise as well as through scanning experiments in which a two-axis nanopositioning stage is steered by the algorithm using simulated height data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.