Abstract

The Raman scattering with local optical excitation from the Majorana edge modes of Kitaev spin liquids and topological superconductors is studied theoretically. Although the effective one-dimensional model is common between these two cases, the coupling to the electromagnetic field is different. It is found that the Raman spectrum at low energy scales with $\omega^3$ in Kitaev spin liquids while it shows the gap in topological superconductors. This is in sharp contrast to the infrared absorption, where the spectrum shows the gap in Kitaev spin liquids, while it behaves as $\sim \omega^2$ in topological superconductors. This indicates that the electrodynamics of Majorana edge modes depends on their higher-dimensional origins. The realistic estimate of the Raman scattering intensity is given for $\alpha$-RuCl$_3$ as the candidate for Kitaev spin liquid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call