Abstract

We analyze the local Rademacher complexity of empirical risk minimization-based multi-label learning algorithms, and in doing so propose a new algorithm for multi-label learning. Rather than using the trace norm to regularize the multi-label predictor, we instead minimize the tail sum of the singular values of the predictor in multi-label learning. Benefiting from the use of the local Rademacher complexity, our algorithm, therefore, has a sharper generalization error bound. Compared with methods that minimize over all singular values, concentrating on the tail singular values results in better recovery of the low-rank structure of the multi-label predictor, which plays an important role in exploiting label correlations. We propose a new conditional singular value thresholding algorithm to solve the resulting objective function. Moreover, a variance control strategy is employed to reduce the variance of variables in optimization. Empirical studies on real-world data sets validate our theoretical results and demonstrate the effectiveness of the proposed algorithm for multi-label learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call