Abstract

Abstract Systems whose dynamics result from the existence of a wide variety of time and length scales frequently exhibit slow relaxation behavior, manifested through the aging compartment of the correlations and the nonexponential decay of the response function. Experiments performed in systems such as amorphous polymers and supercooled liquids and glasses seem to indicate that these systems undergo, in general, non-Markovian and nonstationary dynamics. Hence, in this contribution, we present a dynamical description of slow relaxation systems based on a generalization of Onsager’s theory to nonequilibrium aging states. By assuming the existence of a local quasi-equilibrium state characterized by a nonstationary probability distribution the entropy of the system is expressed in terms of the conditional probability density by means of the Gibbs entropy postulate. Thus, by taking into account probability conservation and the rules of nonequilibrium thermodynamics, the generalized Fokker–Planck equation is derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.