Abstract

AbstractIn this article a method to improve the precision of the classical molecular dynamics force field by solving an approximation problem with scattered quantum mechanical data is presented. This novel technique is based on two steps. In the first step a partition of unity scheme is used for partitioning the state space by meshfree basis functions. As a consequence the potential can be localized for each basis function. In a second step, for one state in each meshfree basis function, the precise QM-based charges are computed. These local QM-based charges are then used, to optimize the local potential function. The performance of this method is shown for the alanine tripeptide.KeywordsForce FieldPartial ChargePartial DensityDiscretization NodeCharge CalculationThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.